Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Clin Invest ; 133(1)2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36282598

RESUMO

Multisystem inflammatory syndrome in children (MIS-C) evolves in some pediatric patients following acute infection with SARS-CoV-2 by hitherto unknown mechanisms. Whereas acute-COVID-19 severity and outcomes were previously correlated with Notch4 expression on Tregs, here, we show that Tregs in MIS-C were destabilized through a Notch1-dependent mechanism. Genetic analysis revealed that patients with MIS-C had enrichment of rare deleterious variants affecting inflammation and autoimmunity pathways, including dominant-negative mutations in the Notch1 regulators NUMB and NUMBL leading to Notch1 upregulation. Notch1 signaling in Tregs induced CD22, leading to their destabilization in a mTORC1-dependent manner and to the promotion of systemic inflammation. These results identify a Notch1/CD22 signaling axis that disrupts Treg function in MIS-C and point to distinct immune checkpoints controlled by individual Treg Notch receptors that shape the inflammatory outcome in SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Criança , COVID-19/genética , Linfócitos T Reguladores , Inflamação/genética , Receptor Notch1/genética , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico
2.
Sci Immunol ; 7(75): eabl8357, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36149942

RESUMO

The molecular programs involved in regulatory T (Treg) cell activation and homeostasis remain incompletely understood. Here, we show that T cell receptor (TCR) signaling in Treg cells induces the nuclear translocation of serine/threonine kinase 4 (Stk4), leading to the formation of an Stk4-NF-κB p65-Foxp3 complex that regulates Foxp3- and p65-dependent transcriptional programs. This complex was stabilized by Stk4-dependent phosphorylation of Foxp3 on serine-418. Stk4 deficiency in Treg cells, either alone or in combination with its homolog Stk3, precipitated a fatal autoimmune lymphoproliferative disease in mice characterized by decreased Treg cell p65 expression and nuclear translocation, impaired NF-κB p65-Foxp3 complex formation, and defective Treg cell activation. In an adoptive immunotherapy model, overexpression of p65 or the phosphomimetic Foxp3S418E in Stk3/4-deficient Treg cells ameliorated their immune regulatory defects. Our studies identify Stk4 as an essential TCR-responsive regulator of p65-Foxp3-dependent transcription that promotes Treg cell-mediated immune tolerance.


Assuntos
Fatores de Transcrição Forkhead , NF-kappa B , Proteínas Serina-Treonina Quinases , Linfócitos T Reguladores , Animais , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Homeostase , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Serina , Linfócitos T Reguladores/citologia , Fator de Transcrição RelA
3.
Immunity ; 55(7): 1173-1184.e7, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35700740

RESUMO

Regulatory T (Treg) cells expressing the transcription factor Foxp3 are an essential suppressive T cell lineage of dual origin: Foxp3 induction in thymocytes and mature CD4+ T cells gives rise to thymic (tTreg) and peripheral (pTreg) Treg cells, respectively. While tTreg cells suppress autoimmunity, pTreg cells enforce tolerance to food and commensal microbiota. However, the role of Foxp3 in pTreg cells and the mechanisms supporting their differentiation remain poorly understood. Here, we used genetic tracing to identify microbiota-induced pTreg cells and found that many of their distinguishing features were Foxp3 independent. Lineage-committed, microbiota-dependent pTreg-like cells persisted in the colon in the absence of Foxp3. While Foxp3 was critical for the suppression of a Th17 cell program, colitis, and mastocytosis, pTreg cells suppressed colonic effector T cell expansion in a Foxp3-independent manner. Thus, Foxp3 and the tolerogenic signals that precede and promote its expression independently confer distinct facets of pTreg functionality.


Assuntos
Fatores de Transcrição Forkhead , Linfócitos T Reguladores , Fatores de Transcrição Forkhead/metabolismo , Tolerância Imunológica , Células Th17/metabolismo , Timócitos/metabolismo
4.
Res Sq ; 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35441180

RESUMO

Multisystem inflammatory syndrome in children (MIS-C) evolves in some pediatric patients following acute infection with SARS-CoV-2 by hitherto unknown mechanisms. Whereas acute-COVID-19 severity and outcome were previously correlated with Notch4 expression on regulatory T (Treg) cells, here we show that the Treg cells in MIS-C are destabilized in association with increased Notch1 expression. Genetic analysis revealed that MIS-C patients were enriched in rare deleterious variant impacting inflammation and autoimmunity pathways, including dominant negative mutations in the Notch1 regulators NUMB and NUMBL. Notch1 signaling in Treg cells induced CD22, leading to their destabilization in an mTORC1 dependent manner and to the promotion of systemic inflammation. These results establish a Notch1-CD22 signaling axis that disrupts Treg cell function in MIS-C and point to distinct immune checkpoints controlled by individual Treg cell Notch receptors that shape the inflammatory outcome in SARS-CoV-2 infection.

5.
J Clin Immunol ; 42(3): 634-652, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35079916

RESUMO

PURPOSE: MALT1 deficiency is a combined immune deficiency characterized by recurrent infections, eczema, chronic diarrhea, and failure to thrive. Clinical and immunological characterizations of the disease have not been previously reported in large cohorts. We sought to determine the clinical, immunological, genetic features, and the natural history of MALT-1 deficiency. METHODS: The clinical findings and treatment outcomes were evaluated in nine new MALT1-deficient patients. Peripheral lymphocyte subset analyses, cytokine secretion, and proliferation assays were performed. We also analyzed ten previously reported patients to comprehensively evaluate genotype/phenotype correlation. RESULTS: The mean age of patients and disease onset were 33 ± 17 and 1.6 ± 0.7 months, respectively. The main clinical findings of the disease were recurrent infections (100%), skin involvement (100%), failure to thrive (100%), oral lesions (67%), chronic diarrhea (56%), and autoimmunity (44%). Eosinophilia and high IgE were observed in six (67%) and two (22%) patients, respectively. The majority of patients had normal T and NK cells, while eight (89%) exhibited reduced B cells. Immunoglobulin replacement and antibiotics prophylaxis were mostly ineffective in reducing the frequency of infections and other complications. One patient received hematopoietic stem cell transplantation (HSCT) and five patients died as a complication of life-threatening infections. Analyzing this cohort with reported patients revealed overall survival in 58% (11/19), which was higher in patients who underwent HSCT (P = 0.03). CONCLUSION: This cohort provides the largest analysis for clinical and immunological features of MALT1 deficiency. HSCT should be offered as a curative therapeutic option for all patients at the early stage of life.


Assuntos
Insuficiência de Crescimento , Transplante de Células-Tronco Hematopoéticas , Diarreia , Estudos de Associação Genética , Humanos , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , Fenótipo , Reinfecção
6.
Allergy ; 77(3): 1004-1019, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34287962

RESUMO

BACKGROUND: Biallelic loss-of-function mutations in CARMIL2 cause combined immunodeficiency associated with dermatitis, inflammatory bowel disease (IBD), and EBV-related smooth muscle tumors. Clinical and immunological characterizations of the disease with long-term follow-up and treatment options have not been previously reported in large cohorts. We sought to determine the clinical and immunological features of CARMIL2 deficiency and long-term efficacy of treatment in controlling different disease manifestations. METHODS: The presenting phenotypes, long-term outcomes, and treatment responses were evaluated prospectively in 15 CARMIL2-deficient patients, including 13 novel cases. Lymphocyte subpopulations, protein expression, regulatory T (Treg), and circulating T follicular helper (cTFH ) cells were analyzed. Three-dimensional (3D) migration assay was performed to determine T-cell shape. RESULTS: Mean age at disease onset was 38 ± 23 months. Main clinical features were skin manifestations (n = 14, 93%), failure to thrive (n = 10, 67%), recurrent infections (n = 10, 67%), allergic symptoms (n = 8, 53%), chronic diarrhea (n = 4, 27%), and EBV-related leiomyoma (n = 2, 13%). Skin manifestations ranged from atopic and seborrheic dermatitis to psoriasiform rash. Patients had reduced proportions of memory CD4+ T cells, Treg, and cTFH cells. Memory B and NK cells were also decreased. CARMIL2-deficient T cells exhibited reduced T-cell proliferation and cytokine production following CD28 co-stimulation and normal morphology when migrating in a high-density 3D collagen gel matrix. IBD was the most severe clinical manifestation, leading to growth retardation, requiring multiple interventional treatments. All patients were alive with a median follow-up of 10.8 years (range: 3-17 years). CONCLUSION: This cohort provides clinical and immunological features and long-term follow-up of different manifestations of CARMIL2 deficiency.


Assuntos
Doenças Inflamatórias Intestinais , Doenças da Imunodeficiência Primária , Humanos , Proteínas dos Microfilamentos/genética , Mutação , Fenótipo
8.
J Exp Med ; 218(8)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34033676

RESUMO

A whole-genome CRISPR/Cas9 screen identified ATP2A2, the gene encoding the Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 2 protein, as being important for V(D)J recombination. SERCAs are ER transmembrane proteins that pump Ca2+ from the cytosol into the ER lumen to maintain the ER Ca2+ reservoir and regulate cytosolic Ca2+-dependent processes. In preB cells, loss of SERCA2 leads to reduced V(D)J recombination kinetics due to diminished RAG-mediated DNA cleavage. SERCA2 deficiency in B cells leads to increased expression of SERCA3, and combined loss of SERCA2 and SERCA3 results in decreased ER Ca2+ levels, increased cytosolic Ca2+ levels, reduction in RAG1 and RAG2 gene expression, and a profound block in V(D)J recombination. Mice with B cells deficient in SERCA2 and humans with Darier disease, caused by heterozygous ATP2A2 mutations, have reduced numbers of mature B cells. We conclude that SERCA proteins modulate intracellular Ca2+ levels to regulate RAG1 and RAG2 gene expression and V(D)J recombination and that defects in SERCA functions cause lymphopenia.


Assuntos
ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Recombinação V(D)J/genética , Animais , Linfócitos B/imunologia , Cálcio/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Homeostase , Humanos , Linfopenia/imunologia , Linfopenia/patologia , Camundongos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/deficiência
10.
Immunity ; 54(6): 1186-1199.e7, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33915108

RESUMO

A cardinal feature of COVID-19 is lung inflammation and respiratory failure. In a prospective multi-country cohort of COVID-19 patients, we found that increased Notch4 expression on circulating regulatory T (Treg) cells was associated with disease severity, predicted mortality, and declined upon recovery. Deletion of Notch4 in Treg cells or therapy with anti-Notch4 antibodies in conventional and humanized mice normalized the dysregulated innate immunity and rescued disease morbidity and mortality induced by a synthetic analog of viral RNA or by influenza H1N1 virus. Mechanistically, Notch4 suppressed the induction by interleukin-18 of amphiregulin, a cytokine necessary for tissue repair. Protection by Notch4 inhibition was recapitulated by therapy with Amphiregulin and, reciprocally, abrogated by its antagonism. Amphiregulin declined in COVID-19 subjects as a function of disease severity and Notch4 expression. Thus, Notch4 expression on Treg cells dynamically restrains amphiregulin-dependent tissue repair to promote severe lung inflammation, with therapeutic implications for COVID-19 and related infections.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Celular , Pneumonia Viral/etiologia , Pneumonia Viral/metabolismo , Receptor Notch4/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Anfirregulina/farmacologia , Animais , Biomarcadores , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imuno-Histoquímica , Imunomodulação/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Vírus da Influenza A/fisiologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Transgênicos , Pneumonia Viral/patologia , Receptor Notch4/antagonistas & inibidores , Receptor Notch4/genética , Índice de Gravidade de Doença
11.
Nat Immunol ; 22(5): 607-619, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33833438

RESUMO

FOXP3 deficiency in mice and in patients with immune dysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome results in fatal autoimmunity by altering regulatory T (Treg) cells. CD4+ T cells in patients with IPEX syndrome and Foxp3-deficient mice were analyzed by single-cell cytometry and RNA-sequencing, revealing heterogeneous Treg-like cells, some very similar to normal Treg cells, others more distant. Conventional T cells showed no widespread activation or helper T cell bias, but a monomorphic disease signature affected all CD4+ T cells. This signature proved to be cell extrinsic since it was extinguished in mixed bone marrow chimeric mice and heterozygous mothers of patients with IPEX syndrome. Normal Treg cells exerted dominant suppression, quenching the disease signature and revealing in mutant Treg-like cells a small cluster of genes regulated cell-intrinsically by FOXP3, including key homeostatic regulators. We propose a two-step pathogenesis model: cell-intrinsic downregulation of core FOXP3-dependent genes destabilizes Treg cells, de-repressing systemic mediators that imprint the disease signature on all T cells, furthering Treg cell dysfunction. Accordingly, interleukin-2 treatment improved the Treg-like compartment and survival.


Assuntos
Diabetes Mellitus Tipo 1/congênito , Diarreia/genética , Fatores de Transcrição Forkhead/deficiência , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças do Sistema Imunitário/congênito , Linfócitos T Reguladores/imunologia , Adolescente , Animais , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Conjuntos de Dados como Assunto , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Diarreia/sangue , Diarreia/imunologia , Modelos Animais de Doenças , Citometria de Fluxo , Fatores de Transcrição Forkhead/genética , Doenças Genéticas Ligadas ao Cromossomo X/sangue , Doenças Genéticas Ligadas ao Cromossomo X/imunologia , Humanos , Doenças do Sistema Imunitário/sangue , Doenças do Sistema Imunitário/genética , Doenças do Sistema Imunitário/imunologia , Lactente , Masculino , Camundongos , Camundongos Transgênicos , Mutação , RNA-Seq , Análise de Célula Única , Linfócitos T Reguladores/metabolismo , Adulto Jovem
13.
J Clin Invest ; 131(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33529171

RESUMO

Tregs restrain both the innate and adaptive immune systems to maintain homeostasis. Allergic airway inflammation, characterized by a Th2 response that results from a breakdown of tolerance to innocuous environmental antigens, is negatively regulated by Tregs. We previously reported that prostaglandin I2 (PGI2) promoted immune tolerance in models of allergic inflammation; however, the effect of PGI2 on Treg function was not investigated. Tregs from mice deficient in the PGI2 receptor IP (IP KO) had impaired suppressive capabilities during allergic airway inflammatory responses compared with mice in which PGI2 signaling was intact. IP KO Tregs had significantly enhanced expression of immunoglobulin-like transcript 3 (ILT3) compared with WT Tregs, which may contribute to the impairment of the IP KO Treg's ability to suppress Th2 responses. Using fate-mapping mice, we reported that PGI2 signaling prevents Treg reprogramming toward a pathogenic phenotype. PGI2 analogs promoted the differentiation of naive T cells to Tregs in both mice and humans via repression of ß-catenin signaling. Finally, a missense variant in IP in humans was strongly associated with chronic obstructive asthma. Together, these data support that PGI2 signaling licenses Treg suppressive function and that PGI2 is a therapeutic target for enhancing Treg function.


Assuntos
Asma/imunologia , Reprogramação Celular/imunologia , Epoprostenol/imunologia , Tolerância Imunológica , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Animais , Asma/genética , Asma/patologia , Reprogramação Celular/genética , Doença Crônica , Epoprostenol/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptores de Epoprostenol/genética , Receptores de Epoprostenol/imunologia , Transdução de Sinais/genética , Linfócitos T Reguladores/patologia
14.
J Clin Immunol ; 41(4): 769-779, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33475942

RESUMO

PURPOSE: Patients with heterozygous gain-of-function (GOF) mutations in STAT1 frequently exhibit chronic mucocutaneous candidiasis (CMC), immunodeficiency and autoimmune manifestations. Several treatment options including targeted therapies and hematopoietic stem cell transplantation (HSCT) are available for STAT1 GOF patients but modalities and outcomes are not well established. Herein, we aimed to unravel the effect of ruxolitinib as a bridge therapy in a patient with sporadic STAT1 T385M mutation to manage infections and other disease manifestations. METHODS: Peripheral blood mononuclear cells were isolated from the patient prior to, during ruxolitinib treatment and 6 months after HSCT. IFN-ß-induced STAT1 phosphorylation/dephosphorylation levels and PMA/ionomycin-stimulated intracellular IL-17A/IFN-γ production in CD4+ T cells were evaluated. Differentially expressed genes between healthy controls and the patient prior to, during ruxolitinib treatment and post-transplantation were investigated using Nanostring nCounter Profiling Panel. RESULTS: Ruxolitinib provided favorable responses by controlling candidiasis and autoimmune hemolytic anemia in the patient. Dysregulation in STAT1 phosphorylation kinetics improved with ruxolitinib treatment and was completely normalized after transplantation. TH17 deficiency persisted after ruxolitinib treatment, but normalized following HSCT. Consistent with the impairment in JAK/STAT signaling, multiple immune related pathways were found to be dysregulated in the patient. At baseline, genes related to type I IFN-related pathways, antigen processing, T-cell and B-cell functions were upregulated, while NK-cell function and cytotoxicity related genes were downregulated. Dysregulated gene expression was partially improved with ruxolitinib treatment and normalized after transplantation. CONCLUSION: Our findings suggest that improved disease management and immune dysregulatory profile can be achieved with ruxolitinib treatment before transplantation and this would be beneficial to reduce the risk of adverse outcome of HSCT.


Assuntos
Mutação com Ganho de Função , Transplante de Células-Tronco Hematopoéticas , Doenças do Sistema Imunitário/etiologia , Doenças do Sistema Imunitário/terapia , Inibidores de Janus Quinases/uso terapêutico , Nitrilas/uso terapêutico , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Fator de Transcrição STAT1/genética , Alelos , Pré-Escolar , Terapia Combinada , Citocinas/metabolismo , Diagnóstico Diferencial , Feminino , Genótipo , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Doenças do Sistema Imunitário/diagnóstico , Imunofenotipagem , Fenótipo , Fosforilação , Fator de Transcrição STAT1/metabolismo , Resultado do Tratamento
18.
Immunity ; 53(5): 971-984.e5, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33176163

RESUMO

Regulatory T (Treg) cell identity is defined by the lineage-specifying transcription factor (TF) Foxp3. Here we examined mechanisms of Foxp3 function by leveraging naturally occurring genetic variation in wild-derived inbred mice, which enables the identification of DNA sequence motifs driving epigenetic features. Chromatin accessibility, TF binding, and gene expression patterns in resting and activated subsets of Treg cells, conventional CD4 T cells, and cells expressing a Foxp3 reporter null allele revealed that the majority of Foxp3-dependent changes occurred at sites not bound by Foxp3. Chromatin accessibility of these indirect Foxp3 targets depended on the presence of DNA binding motifs for other TFs, including TCF1. Foxp3 expression correlated with decreased TCF1 and reduced accessibility of TCF1-bound chromatin regions. Deleting one copy of the Tcf7 gene recapitulated Foxp3-dependent negative regulation of chromatin accessibility. Thus, Foxp3 defines Treg cell identity in a largely indirect manner by fine-tuning the activity of other major chromatin remodeling TFs such as TCF1.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Doenças Autoimunes/etiologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes/patologia , Autoimunidade/genética , Sítios de Ligação , Montagem e Desmontagem da Cromatina , Modelos Animais de Doenças , Epigênese Genética , Feminino , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Imuno-Histoquímica , Masculino , Camundongos , Motivos de Nucleotídeos , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Ligação Proteica , Transativadores/metabolismo
19.
Immunity ; 53(6): 1202-1214.e6, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33086036

RESUMO

The mechanisms by which regulatory T (Treg) cells differentially control allergic and autoimmune responses remain unclear. We show that Treg cells in food allergy (FA) had decreased expression of transforming growth factor beta 1 (TGF-ß1) because of interleukin-4 (IL-4)- and signal transducer and activator of transciription-6 (STAT6)-dependent inhibition of Tgfb1 transcription. These changes were modeled by Treg cell-specific Tgfb1 monoallelic inactivation, which induced allergic dysregulation by impairing microbiota-dependent retinoic acid receptor-related orphan receptor gamma t (ROR-γt)+ Treg cell differentiation. This dysregulation was rescued by treatment with Clostridiales species, which upregulated Tgfb1 expression in Treg cells. Biallelic deficiency precipitated fatal autoimmunity with intense autoantibody production and dysregulated T follicular helper and B cell responses. These results identify a privileged role of Treg cell-derived TGF-ß1 in regulating allergy and autoimmunity at distinct checkpoints in a Tgfb1 gene dose- and microbiota-dependent manner.


Assuntos
Autoimunidade/imunologia , Hipersensibilidade/imunologia , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta1/imunologia , Adolescente , Animais , Autoimunidade/genética , Linfócitos B/imunologia , Diferenciação Celular , Criança , Pré-Escolar , Hipersensibilidade Alimentar/imunologia , Dosagem de Genes , Humanos , Hipersensibilidade/genética , Imunoglobulina G/imunologia , Lactente , Mastócitos/imunologia , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Células T Auxiliares Foliculares/imunologia , Linfócitos T Reguladores/metabolismo , Transcrição Gênica , Fator de Crescimento Transformador beta1/genética , Adulto Jovem
20.
Nat Immunol ; 21(11): 1359-1370, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32929274

RESUMO

Elucidating the mechanisms that sustain asthmatic inflammation is critical for precision therapies. We found that interleukin-6- and STAT3 transcription factor-dependent upregulation of Notch4 receptor on lung tissue regulatory T (Treg) cells is necessary for allergens and particulate matter pollutants to promote airway inflammation. Notch4 subverted Treg cells into the type 2 and type 17 helper (TH2 and TH17) effector T cells by Wnt and Hippo pathway-dependent mechanisms. Wnt activation induced growth and differentiation factor 15 expression in Treg cells, which activated group 2 innate lymphoid cells to provide a feed-forward mechanism for aggravated inflammation. Notch4, Wnt and Hippo were upregulated in circulating Treg cells of individuals with asthma as a function of disease severity, in association with reduced Treg cell-mediated suppression. Our studies thus identify Notch4-mediated immune tolerance subversion as a fundamental mechanism that licenses tissue inflammation in asthma.


Assuntos
Asma/etiologia , Asma/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Receptor Notch4/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Alérgenos/imunologia , Análise de Variância , Asma/diagnóstico , Biomarcadores , Suscetibilidade a Doenças , Expressão Gênica , Via de Sinalização Hippo , Humanos , Tolerância Imunológica , Imunofenotipagem , Proteínas Serina-Treonina Quinases/metabolismo , Índice de Gravidade de Doença , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...